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1 Introduction

Current state of the art speech recognition systems
use very little structural linguistic information while
doing word recognition. Some systems attempt to
apply syntactic and semantic analysis to speech, but
this is typically done in a pipelined approach, where
there is thresholding done in between each stage.
It would be advantageous to make use of informa-
tion about higher level linguistic structure before do-
ing any thresholding, so that uncertainty at different
levels (acoustic, word level, syntax, semantics) can
all be weighed simultaneously to recover the most
likely global outcome.

However, the standard CYK parsing algorithm
has cubic run-time complexity, which makes it diffi-
cult to use in streaming speech applications with un-
segmented utterances. Some have proposed frame-
works for parsing using time-series models such as
hierarchical hidden Markov models (HHMMs), with
an architecture similar to that of Murphy and Paskin
(2001). These models have been proposed because
there are algorithms for recovering a most likely
sequence in linear time. However, transforming a
grammar into a format usable by time series models
like HHMMs increases the constants in the run-time
complexity, and the practical effect of these transfor-
mations on run-time complexity has not been evalu-
ated thoroughly.

This paper describes a system that does parsing
using an HHMM, and shows preliminary experi-
mental results on run-time for utterances of vary-
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ing lengths with this system compared to a baseline
PCFG parser.

2 HHMM Parsing

HHMM parsing makes use of a graphical model ar-
chitecture such that, for each word (time step), there
is a ‘stack’ of random variables, which essentially
are the stack for a non-deterministic shift-reduce
parser.

Since the topology of the network cannot change
over time, the HHMM requires a fixed size stack.
The naive solution to determining a stack size would
be to find the sentence in the training data with
the largest stack requirements, and simply make
the topology large enough to handle recursion of
that depth. However, this highlights two problems:
First, most of the stack depth would be unused at
each step, although the algorithm would still have
to spend time exploring potential uses of the stack.
This leads to the second problem, which is that the
algorithm for HHMM inference has a run-time that
is exponential on the depth of the network (see Sec-
tion 3), which means that it is in our best interests to
limit the depth of the HHMM topology.

The following sections will describe both how an
HHMM can be trained by a set of syntactically an-
notated trees to do parsing on unseen sentences, and
how those trees can be transformed to minimize the
depth required in the HHMM topology.

2.1 Right-corner transform

Input trees are first binarized as in Miller and
Schuler (2008), and then transformed intoright-
corner trees using transform rules similar to those
described by Johnson (1998). This right-corner
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b) result of right-corner transform:
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Figure 1: This figure shows a) a binarized phrase structure tree which serves as the input to the right corner transform,
and b) a right-corner transform of this binarized tree.

transform is simply the left-right dual of a left-
corner transform. It transforms all right recursive
sequences in each tree into left recursive sequences
of symbols of the formA1/A2, denoting an incom-
plete instance of categoryA1 lacking an instance of
categoryA2 to the right.

Rewrite rules for the right-corner transform are
shown below:1

A1

α1 A2

α2 A3:α3

⇒

A1

A1/A2

α1

A2/A3

α2

A3:α3

1All Ai denote nonterminal symbols, and allαi denote sub-
trees; the notationA1:α1 indicates a subtreeα1 with labelA1;
and all rewrites are applied recursively, from leaves to root.

A1

A1/A2:α1 A2/A3

α2

α3 . . . ⇒

A1

A1/A3

A1/A2:α1 α2

α3 . . .

Here, the first rewrite rule is applied iteratively
(bottom-up on the tree) to flatten all right recursion,
using incomplete constituents to record the original
nonterminal ordering. The second rule is then ap-
plied to generate left recursive structure, preserving
this ordering. An example of this transform applied
to a binarized tree is shown in Figure 1.

This transform has the property of turning all right
recursion into left recursion, while leaving left re-
cursion intact. This is useful because left recursion



does not require stack space, since each word taken
as input combines with an element that is popped off
the stack to form a new constituent that becomes the
new top of the stack. Center recursion, which no-
toriously causes problems in human processing as
sentences become more deeply recursive, is also left
intact. Contrary to left recursion, center recursion
does take up space on the stack. Thus, this transform
adheres to psycholinguistic models in which center
recursion requires memory during processing while
other types of recursion do not.

By transforming trees from the training set in this
manner, we minimize the amount of stack space
needed to represent utterances that humans realis-
tically generate and understand.

2.2 Hierarchical HMMs

Right-corner transformed trees from the training set
are then mapped to random variable positions in a
hierarchical hidden Markov model, essentially a hid-
den Markov model (HMM) factored into some fixed
number of stack levels at each time step.

HMMs characterize speech or text as a sequence
of hidden statesqt (which may consist of speech
sounds, words, or other hypothesized syntactic or
semantic information), and observed statesot at cor-
responding time stepst (typically short, overlap-
ping frames of an audio signal, or words or char-
acters in a text processing application). A most
likely sequence of hidden stateŝq1..T can then
be hypothesized given any sequence of observed
stateso1..T , using Bayes’ Law (Equation 2) and
Markov independence assumptions (Equation 3) to
define a fullP(q1..T | o1..T ) probability as the prod-
uct of a Language Model (ΘL) prior probability

P(q1..T )
def
=

∏

t PΘL
(qt | qt−1) and anObservation

Model (ΘO) likelihood probabilityP(o1..T | q1..T )
def
=

∏

t PΘO
(ot | qt):

q̂1..T = argmax
q1..T

P(q1..T | o1..T ) (1)

= argmax
q1..T

P(q1..T ) · P(o1..T | q1..T ) (2)

def
= argmax

q1..T

T
∏

t=1

PΘL
(qt | qt−1) · PΘO

(ot | qt)

(3)

Language model transitionsPΘL
(qt | qt−1) over

complex hidden statesqt can be modeled using syn-

chronized levels of stacked-up component HMMs
in an HHMM as in Murphy and Paskin (2001).
HHMM transition probabilities are calculated in two
phases: a ‘reduce’ phase (resulting in an interme-
diate, marginalized stateft), in which component
HMMs may terminate; and a ‘shift’ phase (resulting
in a modeled stateqt), in which unterminated HMMs
transition, and terminated HMMs are re-initialized
from their parent HMMs. Variables over interme-
diateft and modeledqt states are factored into se-
quences of depth-specific variables – one for each of
D levels in the HMM hierarchy:

ft = 〈f1
t . . . fD

t 〉 (4)

qt = 〈q1
t . . . qD

t 〉 (5)

Transition probabilities are then calculated as a
product of transition probabilities at each level, us-
ing level-specific ‘reduce’ΘF and ‘shift’ ΘQ mod-
els:

P(qt | qt−1) =
∑

ft

P(ft | qt−1) · P(qt | ft qt−1) (6)

def
=

∑

f1
t
..fD

t

D
∏

d=1

PΘF(f
d
t | fd+1

t qd
t−1q

d−1
t−1 )

·
D
∏

d=1

PΘQ(qd
t | f

d+1
t fd

t qd
t−1q

d−1
t )

(7)

with fD+1
t andq0

t defined as constants.

Shift and reduce probabilities are now defined in
terms of finitely recursive FSAs with probability dis-
tributions over transition, recursive expansion, and
final-state status of states at each hierarchy level. In
simple HHMMs, each intermediate state variable is
a boolean switching variablefd

t ∈ {0,1} and each
modeled state variable is a syntactic, lexical, or pho-
netic stateqd

t . The intermediate variablefd
t is true

(equal to1) with probability 1 if there is a transition
at the level immediately belowd and the stack ele-
mentqd

t−1 is a final state, and false (equal to0) with
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Figure 2: Sample tree from Figure 1 mapped toqd
t

variable positions of an HHMM at each stack depthd (vertical)
and time stept (horizontal). Values for final-state variablesfd

t
are not shown. Note that some nonterminal labels have

been omitted; labels for these nodes can be reconstructed from their children.

probability 1 otherwise:2

PΘF(f
d
t | fd+1

t qd
t−1q

d−1
t−1 )

def
=

{

if fd+1
t =0 : [fd

t =0]

if fd+1
t =1 : PΘF-Reduce(f

d
t | qd

t−1, q
d−1
t−1 )

(8)

wherefD+1 = 1 andq0
t = ROOT.

Shift probabilities at each level are defined us-
ing level-specific transitionΘQ-Trans and expan-
sionΘQ-Expandmodels:

PΘQ(qd
t | f

d+1
t fd

t qd
t−1q

d−1
t )

def
=







if fd+1
t =0, fd

t =0 : [qd
t = qd

t−1]

if fd+1
t =1, fd

t =0 : PΘQ-Trans(q
d
t | q

d
t−1q

d−1
t )

if fd+1
t =1, fd

t =1 : PΘQ-Expand(q
d
t | q

d−1
t )

(9)

wherefD+1 = 1 andq0
t = ROOT. This model

is conditioned on final-state switching variables at
and immediately below the current HHMM level.
If there is no final state immediately below the cur-
rent level (the first case above), it deterministically
copies the current HHMM state forward to the next
time step. If there is a final state immediately below
the current level (the second case above), it transi-
tions the HHMM state at the current level, accord-
ing to the distributionΘQ-Trans. And if the state at
the current level is final (the third case above), it re-
initializes this state given the state at the level above,

2Here [·] is an indicator function:[φ] = 1 if φ is true,0
otherwise.

according to the distributionΘQ-Expand. The overall
effect is that higher-level HMMs are allowed to tran-
sition only when lower-level HMMs terminate. An
HHMM therefore behaves like a probabilistic im-
plementation of a pushdown automaton (or ‘shift-
reduce’ parser) with a finite stack, where the maxi-
mum stack depth is equal to the number of levels in
the HHMM hierarchy.

2.3 Mapping trees to HHMM derivations

Any tree can now be mapped to an HHMM deriva-
tion by aligning the nonterminals withqd

t categories.
First, it is necessary to define rightward depthd,
right index positiont, and final (right) child statusf ,
for every nonterminal nodeA in a tree, where:

• d is defined to be the number of right branches
between nodeA and the root,

• t is defined to be the number of words beneath
or to the left of nodeA, and

• f is defined to be0 if nodeA is a left (or unary)
child, 1 otherwise.

Any binary-branching tree can then be annotated
with these values and rewritten to define labels and
final-state values for every combination ofd and t
covered by the tree, using the rewrite rule: This
rewrite simply copies stacked up constituents over
multiple time steps, while other constituents are be-
ing recognized. Coordinatesd, t ≤ D, T that are
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Figure 3: This plot shows the estimated run-time if we approximate the constants in the CYK and HHMM algorithms
as described in Section 3.

not covered by the tree are assigned label ‘−’, and
f = 1. The resulting label and final-state values
at each node now define a value ofqd

t andfd
t+1 for

each depthd and time stept of the HHMM (see Fig-
ure 2). Probabilities for HHMM modelsΘQ-Expand,
ΘQ-Trans, andΘF-Reducecan then be estimated from
these values directly. Like the right-corner trans-
form, this mapping is reversible, soq andf values
can be taken from a hypothesized most likely se-
quence and mapped back to trees (which can then
undergo the reverse of the right-corner transform to
become ordinary phrase structure trees).

3 Run-time analysis

The CYK algorithm is widely known and frequently
used, with run-time complexity ofO(n3), wheren
is the number of terminal symbols in the string. This
complexity is derived from the fact that the algo-
rithm contains three nested iterations across start-
ing point, end point, and split point while it is pars-
ing. In parsing applications, however, the worst case
asymptotic complexity may not provide enough in-
formation to distinguish between the speed of two
algorithms, since the vast majority of human gen-

erated sentences tend to be shorter than 50 words.
For our purposes, then, it is useful to point out
that a closer approximation to the number of re-
quired operations for the CYK algorithm is actually
O(n3Q3), whereQ is the number of constituent la-
bels in the grammar. This results from the innermost
part of the main loop, where the algorithm contains
three more nested loops that iterate over the two pos-
sible symbols on the right hand side of the rule and
the possible symbol on the left hand side.

HHMM parsers, on the other hand, are not as
widely known, but the time complexity properties
of HHMMs are well studied. Murphy and Paskin
(2001) showed that by casting an HHMM as a dy-
namic Bayes network, the algorithms for doing in-
ference on that HHMM can be made linear on the
length of the input string, which is just the word in-
put sequence. Taking a closer look, they show that
a better approximation to the number of operations
that an HHMM parser must use isO(nDQ′⌈1.5D⌉),
wheren is again the length of input,D is the depth
of the HHMM, andQ′ is the number of possible val-
ues of a given random variable.

In the HHMM parser presented here,D = 3,
since our trees have been transformed as above, such
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that almost all trees in our corpus fit into that depth.
Q′ corresponds to the number of constituent types,
but in this case we have to account for all the incom-
plete constituents (slash categories) created by the
right corner transform. To a first approximation, this
value isQ2, whereQ is the number of constituent
types in the original grammar (the same value as
for the CYK parser’s run-time approximation), since
each constituent can be of the formα/β, for α and
β each being a constituent in the original grammar.3

We plotted a comparison of a CYK parser’s ex-
pected runtime with a HHMM parser’s expected
runtime, estimated as above, in Figure 3. The two in-
dependent variables shown are sentence length and
number of rules in the original grammar, while the
dependent variable (z-axis) shows the approximate
worst case number of operations for the parser. The
notable thing in this graph is that for any reasonable
sentence size (and even well beyond), the relevant
variables in determining run-times for the respec-
tive parsers are in the range where the constant for

3In fact, this is a conservative estimate because the binariza-
tion preprocess to the right corner transform creates additional
categories.

grammar size is dominant over the term for sentence
length.

4 Evaluation

The CYK and HHMM parsers both have the same
input and output, but they work in entirely differ-
ent ways internally. The HHMM parser contains a
much richer syntactic representation (due to the bi-
narization and right corner transform), operates in
a top-down manner, and has different dependencies
than a CYK parser. If run unconstrained, this ar-
chitecture can potentially be very accurate, but very
slow. We wanted to see what sort of time perfor-
mance this system could achieve if we use a beam
search to constrain the set of hypotheses explored by
the HHMM during processing, with the beam width
set such that the accuracy results are comparable to
the CYK parser.

To evaluate the actual run-time properties of the
HHMM parser we performed experiments using
sentences of varying length, and compared total run-
time between this parser and an off the shelf PCFG
parser using the CYK algorithm. The sentences



for both training and testing were taken from the
Switchboard corpus (Godfrey et al., 1992), a corpus
of spontaneous conversations between pairs of indi-
viduals segmented by annotators into sentence-like
units. In addition, to simulate realistic speech pars-
ing conditions, input to the parsers was stripped of
punctuation for both training and testing.

For testing, the data was arranged by length, start-
ing with utterances of 10 words, extending to ut-
terances of 66 words. Both the HHMM parser and
CYK parser were run on all sentences of each length,
and average parsing time was calculated across each
sentence length. In both parsers, the timer was
started after the grammar was loaded into memory,
so the times measured do not include the overhead,
only parsing time.

Figure 4 shows the results of these experiments.
This plot shows that in the range of sentence lengths
encountered in this corpus, the CYK parser is indeed
faster than the HHMM parser. Despite what might
seem to be prohibitively large constants in the theo-
retical run-time of the HHMM parser, through most
of this range of input length the HHMM parser is
only about twice as slow as the CYK parser.

5 Discussion

These results suggest that a CYK parser may be pre-
ferred in standard applications parsing segmented
text when speed is an issue, while an HHMM parser
will be most useful when its unique properties are
able to be exploited. For example, in streaming
text input, say from a speech recognizer, sentence
boundaries are not given, and the input will need
to be segmented. Finding sentence-like units (SUs)
in speech is a difficult problem, as shown by error
rates of about26% in state of the art systems (Roark
et al., 2006). That system then uses a discrimina-
tive reranker to choose from among the n-best out-
puts of the SU detector. As a result, even though the
CYK parser may run fast on the resulting SUs, ob-
taining that segmentation as a preprocess takes some
amount of time. Further, it may be necessary to
parse several of the best segmentations and choose
the best of those to obtain the best results.

On the the other hand, an HHMM parser can be
run on streaming input, and do segmenting as it
parses. This has the potential advantage of consid-

ering multiple sources of knowledge and preserv-
ing uncertainty among different tasks involved, pars-
ing and boundary detection to find the best over-
all analysis. Future work for this parser will take
the Switchboard corpus as input, ignoring sentence
breaks, and parse the entire stream as one unit. We
expect that this approach will not only do well at
doing parsing and segmenting, but it will be very
efficient as well, because it does segmentation auto-
matically, as part of the parsing process.
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