An Empirical Evaluation of HHMM Parsing Time*

Tim Miller William Schuler
University of Minnesota University of Minnesota
tm || @s.um. edu schul er @s. um. edu
1 Introduction ing lengths with this system compared to a baseline

- PCFG parser.
Current state of the art speech recognition systems P

use very little structural linguistic information while 2 HHMM Parsing
doing word recognition. Some systems attempt to

apply syntactic and semantic analysis to speech, b4HMM parsing makes use of a graphical model ar-
this is typically done in a pipelined approach, wherehitecture such that, for each word (time step), there
there is thresholding done in between each stagie. a ‘stack’ of random variables, which essentially
It would be advantageous to make use of informaare the stack for a non-deterministic shift-reduce
tion about higher level linguistic structure before doparser.
ing any thresholding, so that uncertainty at different gjnce the topology of the network cannot change
levels (acoustic, word level, syntax, semantics) cafver time, the HHMM requires a fixed size stack.
all be weighed simultaneously to recover the mosthe naive solution to determining a stack size would
likely global outcome. be to find the sentence in the training data with
However, the standard CYK parsing algorithmhe |argest stack requirements, and simply make
has cubic run-time complexity, which makes it diffi-the topology large enough to handle recursion of
cultto use in streaming speech applications with urhat depth. However, this highlights two problems:
segmented utterances. Some have proposed franggst, most of the stack depth would be unused at
works for parsing using time-series models such asgch step, although the algorithm would still have
hierarchical hidden Markov models (HHMMs), with to spend time exploring potential uses of the stack.
an architecture similar to that of Murphy and PaskiThjs leads to the second problem, which is that the
(2001). These models have been proposed becayggorithm for HHMM inference has a run-time that
there are algorithms for recovering a most likelys exponential on the depth of the network (see Sec-

sequence in linear time. However, transforming @on 3), which means that it is in our best interests to
grammar into a format usable by time series modelgnit the depth of the HHMM topology.

like HHMMs increases the constants in the run-time e following sections will describe both how an

complexity, and the practical effect of these transfofy4mM can be trained by a set of syntactically an-
mations on run-time complexity has not been evalyyotated trees to do parsing on unseen sentences, and
ated thoroughly. how those trees can be transformed to minimize the

This paper describes a system that does parsiggpth required in the HHMM topology.
using an HHMM, and shows preliminary experi-

mental results on run-time for utterances of vary2 1 Right-corner transform

The material in this article is based upon work supporteqlnput trees are first binarized as in Miller and

by NASA under award NNX08AC36A. Any opinions, findings, S
and conclusions or recommendations expressed in this maten%\f:hu'er (2008), and then transformed imight

are those of the author(s) and do not necessarily reflect the vieS" Ner trees using transform rules simila_lr to those
of the National Aeronautics and Space Administration. described by Johnson (1998). This right-corner

a) binarized phrase structure tree:

S
< 3
alnd NAP
v oves W
vib Te AsE RN

VBD ADVP EDITED-RB RB RB JJ INTJ NN

| | | | I | |
was really not not very good uh deal

b) result of right-corner transform:

S
/\
S/NN N|N
/\
S/NN |N|TJ deal
S/INP ADJP uh
T~
S/IVP VBD ADJP/JJ JJ

N — | |

S/S NP VBD/RB RB RB good

CcC ilt VBDmD-RB nlot very
and VéD nlot
VBD/MVP

VéD re:lally

was

Figure 1: This figure shows a) a binarized phrase structasvtthich serves as the input to the right corner transform,
and b) a right-corner transform of this binarized tree.

transform is simply the left-right dual of a left- A1 A1

corner transform. It transforms all right recursive AllAm. = AilAs a3
sequences in each tree into left recursive sequences OJ e S

. . 2 1 2.01 2
of symbols of the form4; /A,, denoting an incom-

plete instance of category, lacking an instance of Here, the first rewrite rule is applied iteratively

categoryA; to the right. (bottom-up on the tree) to flatten all right recursion,
Rewrite rules for the right-corner transform areusing incomplete constituents to record the original
shown below?: nonterminal ordering. The second rule is then ap-
A1 /All\ plied to generate left recursive structure, preserving

o1 Ag = AjAy AglAs Azas this ordering. An example of this transform applied

| | to a binarized tree is shown in Figure 1.

@ Awes oo This transform has th fturning all righ
T o . IS transform has the property of turning all right
All A; denote nonterminal symbols, and all denote sub- L lef p P h¥| | . g lef 9
trees; the notationl;:c; indicates a subtree; with label A;; recu_rsmp Into le t_ re_Cl"rS'O”’ while leaving left r(_a-
and all rewrites are applied recursively, from leaves to root. ~ Cursion intact. This is useful because left recursion

does not require stack space, since each word takelmronized levels of stacked-up component HMMs
as input combines with an element that is popped oit an HHMM as in Murphy and Paskin (2001).
the stack to form a new constituent that becomes thdHMM transition probabilities are calculated in two
new top of the stack. Center recursion, which nophases: a ‘reduce’ phase (resulting in an interme-
toriously causes problems in human processing aate, marginalized stat¢), in which component
sentences become more deeply recursive, is also lefMMs may terminate; and a ‘shift’ phase (resulting
intact. Contrary to left recursion, center recursiofin a modeled statg), in which unterminated HMMs
does take up space on the stack. Thus, this transfotmansition, and terminated HMMs are re-initialized
adheres to psycholinguistic models in which centdrom their parent HMMs. Variables over interme-
recursion requires memory during processing whildiate f; and modeled;; states are factored into se-
other types of recursion do not. guences of depth-specific variables — one for each of
By transforming trees from the training set in thisD levels in the HMM hierarchy:
manner, we minimize the amount of stack space
needed to represent utterances that humans realis-
tically generate and understand. fo=(ft.. P 4)

2.2 Hierarchical HMMs a={q...a) (5)

Right-corner transformed trees from the training set
are then mapped to random variable positions in
hierarchical hidden Markov model, essentially a hid-
den Markov model (HMM) factored into some fixed!
number of stack levels at each time step.

HMMs characterize speech or text as a sequengéz
of hidden stateg;; (which may consist of speech
sounds, words, or other hypothesized syntactic or
semantic information), and observed statgeat cor- P [gr1) Z P(filgw1) - Plat| fi gea) (6)
responding time steps (typically short, overlap-
ping frames of an audio signal, or words or char- def
acters in a text processing application). A most :Z H Por(fi' 1/ C”qulqt 1)
likely sequence of hidden stateg can then fit d=1
be hypothesized given any sequence of observed D a1
stateso; 7, using Bayes’ Law (Equation 2) and H Oq (af | FE 1 ailaai™)
Markov independence assumptions (Equation 3) to =1)
define a fullP(q1.7 | 01..7) probability as the prod-
uct of a Language Model (©1,) prior probability

P(q1.7) o IL; Po.(g: | g1) and anObservation
Model () likelihood probabilityP (o1 7 | g1 1) %

'?ransmon probabilities are then calculated as a
product of transition probabilities at each level, us-
ing level-specific ‘reduced®g and ‘shift’' ©g mod-

with f L andq) defined as constants.

P Shift and reduce probabilities are now defined in
[1; Peo (o[ar): e . . e
terms of finitely recursive FSAs with probability dis-
Q.7 = argmax P(q1.r | o1.7) (1) tributions over transition, recursive expansion, and
ar final-state status of states at each hierarchy level. In
= arqgln;axp(m--T) -Plorr[q1.1) (@) simple HHMMs, each intermediate state variable is
ot a boolean switching variablg® € {0,1} and each
= Poy (¢t | gr1) - Poo (01 | 1) iable i ic, lexi -
arqgll"f;aXH oL\t | 41 o\Vt | qt modeled state variable is a syntactic, lexical, or pho
“T =1

3) netic stategf. The intermediate variablg! is true
(equal to1) with probability 1 if there is a transition
Language model transitionBe, (¢: | ¢+—1) over at the level immediately below and the stack ele-
complex hidden states can be modeled using syn-mentq?, is a final state, and false (equal@pwith

PR S S S S S S S

- @ 2 2 2 2 L L1454
% L L
o 3 S %

d=2 \ \ % % %T \ _?{\0_ \ N
Z| | <

d=3 \ \ \ \ \ \ \ \ \ \
-~

ol l 4 Sl =21 = ol % %
word - # s % o o S %Q % S

Figure 2: Sample tree from Figure 1 mapped;fovariable positions of an HHMM at each stack degttvertical)
and time step (horizontal). Values for final-state variablgé are not shown. Note that some nonterminal labels have
been omitted; labels for these nodes can be reconstructextffieir children.

probability 1 otherwisé: according to the distributio®q.gxpana The overall
effectis that higher-level HMMs are allowed to tran-
Por(f] fH gl g & sition only when lower-level HMMs terminate. An
e pdtl_ L1 pd_ HHMM therefore behaves like a probabilistic im-
{If Jo 20 =0l (8) plementation of a pushdown automaton (or ‘shift-
If ftd-H: 1: PeF-Reduce(ftd ’ qfl—l’ qg—_ll) p p

reduce’ parser) with a finite stack, where the maxi-

wherefPH = 1 and¢) = ROOT. mum stack depth is equal to the number of levels in
Shift probabilities at each level are defined usthe HHMM hierarchy.

ing level-specific transition©qg.trans and expan-

Si0NOg.Expanamodels: 2.3 Mappingtreesto HHMM derivations

Any tree can now be mapped to an HHMM deriva-

Poo(al | FH £ g g def tion by aligning the nonterminals wiiff categories.
e an First, it is necessary to define rightward depth
if ff*=0, fi=0: [gf=q%,] o o . : :

¢ It £ right index positiort, and final (right) child statug,

H dH _ -0 - d| d ,d1
it fi" =1, fi=0:Pogradf |414) (9 for every nonterminal nod in a tree, where:

If ftd+1: 17 ft =1: PeQ-Expand(qtd ‘ qg_l) . . .
e d is defined to be the number of right branches

is conditioned on final-state switching variables at
and immediately below the current HHMM level. e tis defined to be the number of words beneath
If there is no final state immediately below the cur- or to the left of node4, and

rent level (the first case above), it deterministically
copies the current HHMM state forward to the next
time step. If there is a final state immediately below

the current level (the second case above), it trans&smy binary-branching tree can then be annotated
tions the HHMM state at the current level, accordwith these values and rewritten to define labels and
ing to the distribution®q.trans And if the state at final-state values for every combination éfand ¢

the current level is final (the third case above), it 'ecovered by the tree, using the rewrite rule: This
initializes this state given the state at the level abovegwrite simply copies stacked up constituents over
 ZHere|[] is an indicator function:j¢] = 1 if ¢ is true,0 Multiple time steps, while other constituents are be-
otherwise. ing recognized. Coordinatest < D, T that are

e fisdefinedto b® if node A is a left (or unary)
child, 1 otherwise.

Approximate Theoretical Parsing Run-time

Worst case number of operations

8e+22
7e+22
6e+22
5e+22
4e+22
3e+22
2e+22
le+22

Figure 3: This plot shows the estimated run-time if we apjpnate the constants in the CYK and HHMM algorithms
as described in Section 3.

not covered by the tree are assigned lab€| and erated sentences tend to be shorter than 50 words.
f = 1. The resulting label and final-state valued-or our purposes, then, it is useful to point out
at each node now define a valueqtﬁfandf,;‘i1 for that a closer approximation to the number of re-
each deptll and time step of the HHMM (see Fig- quired operations for the CYK algorithm is actually
ure 2). Probabilities for HHMM model®q.expand O(n3Q?), whereQ is the number of constituent la-
©Q-Trans aNdOF_reduceCan then be estimated frombels in the grammar. This results from the innermost
these values directly. Like the right-corner transpart of the main loop, where the algorithm contains
form, this mapping is reversible, gsoand f values three more nested loops that iterate over the two pos-
can be taken from a hypothesized most likely sesible symbols on the right hand side of the rule and
guence and mapped back to trees (which can théme possible symbol on the left hand side.

undergo the reverse of the right-corner transform to HHMM parsers, on the other hand, are not as

become ordinary phrase structure trees). widely known, but the time complexity properties
of HHMMs are well studied. Murphy and Paskin
3 Run-timeanalysis (2001) showed that by casting an HHMM as a dy-

namic Bayes network, the algorithms for doing in-
The CYK algorithm is widely known and frequently ference on that HHMM can be made linear on the
used, with run-time complexity aP(n?), wheren length of the input string, which is just the word in-
is the number of terminal symbols in the string. Thigut sequence. Taking a closer look, they show that
complexity is derived from the fact that the algo-a better approximation to the number of operations
rithm contains three nested iterations across stathat an HHMM parser must use @&(n.DQ'M-5P1),
ing point, end point, and split point while it is pars-wheren is again the length of inpuf) is the depth
ing. In parsing applications, however, the worst casef the HHMM, and®’ is the number of possible val-
asymptotic complexity may not provide enough inues of a given random variable.
formation to distinguish between the speed of two In the HHMM parser presented her® = 3,
algorithms, since the vast majority of human gensince our trees have been transformed as above, such

Comparison of Parsing Time

35 T T T |++ T >< HH,IV”Vl Jr
CYK X
30 i B
L

25 ++ i
g
Q
g +
5 20 + 1

+ +

;i ++ ’ X
8 5] +H o+ i
8 T .
3 T4 +

10} +t e -

Jr
e .
st X<]
M&X
0 1 1 1 1 1 1
10 20 30 40 50 60 70 80

Sentence length

Figure 4: This graph shows the results for test runs of the WHpArser as well as a standard CYK-style parser. The
x-axis shows sentence length, while the y-axis shows nuwferconds per sentence. Gaps in the chart indicate that
the test data did not contain sentences of that length.

that almost all trees in our corpus fit into that depthgrammar size is dominant over the term for sentence
Q' corresponds to the number of constituent typesength.
but in this case we have to account for all the incom-
plete constituents (slash categories) created by the Evaluation
right corner transform. To a first approximation, this
value isQ?, where(is the number of constituent The CYK and HHMM parsers both have the same
types in the original grammar (the same value agput and output, but they work in entirely differ-
for the CYK parser’s run-time approximation), sinceent ways internally. The HHMM parser contains a
each constituent can be of the formi3, for « and much richer syntactic representation (due to the bi-
[each being a constituent in the original grammar. narization and right corner transform), operates in
We plotted a comparison of a CYK parser's exa top-down manner, and has different dependencies
pected runtime with a HHMM parser’s expectedhan a CYK parser. If run unconstrained, this ar-
runtime, estimated as above, in Figure 3. The two irghitecture can potentially be very accurate, but very
dependent variables shown are sentence length agldw. We wanted to see what sort of time perfor-
number of rules in the original grammar, while themance this system could achieve if we use a beam
dependent variable (z-axis) shows the approximagearch to constrain the set of hypotheses explored by
worst case number of operations for the parser. THBe HHMM during processing, with the beam width
notable thing in this graph is that for any reasonablget such that the accuracy results are comparable to
sentence size (and even well beyond), the relevatite CYK parser.
variables in determining run-times for the respec- To evaluate the actual run-time properties of the
tive parsers are in the range where the constant fefHMM parser we performed experiments using
Wis a conservative estimate because the binarizg_entences of var_ylng length, and compared total run-
tion preprocess to the right corner transform creates additionime between this parser and an off the shelf PCFG
categories. parser using the CYK algorithm. The sentences

for both training and testing were taken from thesring multiple sources of knowledge and preserv-

Switchboard corpus (Godfrey et al., 1992), a corpuisig uncertainty among different tasks involved, pars-

of spontaneous conversations between pairs of inditg and boundary detection to find the best over-

viduals segmented by annotators into sentence-likdl analysis. Future work for this parser will take

units. In addition, to simulate realistic speech parghe Switchboard corpus as input, ignoring sentence

ing conditions, input to the parsers was stripped dfreaks, and parse the entire stream as one unit. We

punctuation for both training and testing. expect that this approach will not only do well at
For testing, the data was arranged by length, sta@oing parsing and segmenting, but it will be very

ing with utterances of 10 words, extending to utefficient as well, because it does segmentation auto-

terances of 66 words. Both the HHMM parser andnatically, as part of the parsing process.

CYK parser were run on all sentences of each length,

and average parsing time was calculated across eaﬁre]ferences

sentence length. In both parsers, the timer was

started after the grammar was loaded into memoryohn J. Godfrey, Edward C. Holliman, and Jane Mc-

so the times measured do not include the overhead,Da”iel- 1992. Switchboard: Telephone speech corpus
only parsing time. for research and development.Rroc. ICASSP, pages

. . 517-520.
Figure 4 shows the results of these experimentgjark Johnson. 1998. Finite state approximation of

This plot shows that in the range of sentence lengths constraint-based grammars using left-corner grammar
encountered in this corpus, the CYK parser is indeed transforms. InProceedings of COLING/ACL, pages
faster than the HHMM parser. Despite what might 619-623. - B

seem to be prohibitively large constants in the theo'™ Miller and William Schuler. 2008. A unified syn-

) . tactic model for parsing fluent and disfluent speech. In
retical run-time of the HHMM parser, through most Proceedings of the 46th Annual Mesting of the Associ-

of this range of input length the HHMM parser is 4ion for Computational Linguistics (ACL *08).

only about twice as slow as the CYK parser. Kevin P. Murphy and Mark A. Paskin. 2001. Linear time
inference in hierarchical HMMs. IRroc. NIPS, pages
5 Discussion 833-840.

Brian Roark, Yang Liu, Mary Harper, Robin Stewart,

These results suggest that a CYK parser may be pre-'\’_'att[r)‘ew I:]eiseh MlattTW Sr}m(over, IzhaII: Safran,dBan-
ferred in standard applications parsing segmented nie Lort, John Hale, Anha Krasnyanskaya, and Lisa

h di . hil HHMM Yung. 2006. Reranking for sentence boundary detec-
text when speed Is an issue, while an PArser tion in conversational speech. Rroceedings of the

will be most useful when its unique properties are |nternational Conference on Acoustics, Speech, and
able to be exploited. For example, in streaming Sgnal Processing (ICASSP' 06).

text input, say from a speech recognizer, sentence
boundaries are not given, and the input will need
to be segmented. Finding sentence-like units (SUs)
in speech is a difficult problem, as shown by error
rates of abou26% in state of the art systems (Roark
et al.,, 2006). That system then uses a discrimina-
tive reranker to choose from among the n-best out-
puts of the SU detector. As a result, even though the
CYK parser may run fast on the resulting SUs, ob-
taining that segmentation as a preprocess takes some
amount of time. Further, it may be necessary to
parse several of the best segmentations and choose
the best of those to obtain the best results.

On the the other hand, an HHMM parser can be
run on streaming input, and do segmenting as it
parses. This has the potential advantage of consid-

