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Abstract

This paper addresses the task of automatic classifica-
tion of semantic relations between nouns. An evalua-
tion of an improved WordNet-based learning model is
presented. The experiments are performed using data
from the 2007 SemEval-1 Task 4 competition and other
sources. We report substantial improvements over pre-
vious WordNet-based methods on the SemEval-1 data.
The experiments also show that WordNet’s IS-A hier-
archy is better suited for some semantic relations com-
pared with others. Finally, learning curves show that
the task difficulty varies across relations and that adding
more training data from other sources does not increase
the performance.

Introduction
The identification of semantic relations is at the core of Nat-
ural Language Processing (NLP) and many of its applica-
tions. Detecting semantic relations between various text
segments, such as phrases, sentences, and discourse spans
is important for automatic text understanding. Furthermore,
semantic relations represent the core elements in the organi-
zation of lexical semantic knowledge bases intended for in-
ference purposes. In the past few years at many workshops,
tutorials, and competitions this research topic has received
considerable interest from the NLP community.

Semantic relation identification is the problem of recog-
nizing, for example, theCAUSE-EFFECT (cycling, happi-
ness) relation in the sentenceHe derives great joy and happi-
ness from cycling. This task requires several local and global
decisions needed for relation identification. This involves
the meaning of the two noun entities along with the mean-
ing of other words in context.

In this paper we present an evaluation of efficient
WordNet-based learning model that identifies and extracts
noun features from the WordNetIS-A backbone, which was
designed to capture and relate noun senses. The basic idea
is that noun - noun pairs which have the same or simi-
lar sense collocation tend to encode the same semantic re-
lation. We perform various experiments on the SemEval-
1 dataset and compare the results against another state-of-
the-art WordNet-based algorithm (Moldovan & Badulescu
2005) and the top-ranked systems in SemEval-1(Girjuet al.
2007).

The results show that our WordNet-based semantic rela-
tion model places 5th with respect to the top-ranked systems
in the SemEval-1 competition. We believe this is a signifi-
cant result considering that our model uses only the Word-
Net nounIS-A hierarchy. Moreover, we also compute the
learning curves for each relation and show that this model
does not need a lot of training data to learn the classification
function.

The paper is organized as follows. In the next section we
present previous work, followed by the description of the
SemEval task and datasets. We then give a brief overview
of our model. Finally, we present various experiments and
discuss the results.

Previous Work
Most of the attempts in the area of noun - noun semantic
interpretation have studied the problem in different limited
syntactic contexts, such as noun–noun compounds and other
noun phrases (e.g., “N preposition N”, “N, such as N”), and
“N verb N”. Recent work in this area follows roughly two
main approaches: interpretation based on semantic similar-
ity with previous seen examples (Rosario & Hearst 2001),
(Moldovan et al. 2004), (Nastaseet al. 2006), and se-
mantic disambiguation relative to an underlying predicateor
semantically-unambiguous paraphrase (Lapata 2002), (Kim
& Baldwin 2006).

Most methods employ rich ontologies and disregard the
sentence context in which the nouns occur, partly due to the
lack of annotated contextual data on which they are trained
and tested, and partly due to the claim that axioms and on-
tological distinctions are more important than the informa-
tion derived from the context in which the nouns occur. In
this paper, our experimental results also support this claim.
However, we show that some semantic relations are better
suited for WordNet-based models than others, and that con-
textual data are important in the performance of a noun -
noun semantic parser.

Furthermore, most approaches use supervised learning
employing fairly large feature sets on fairly small datasets.
For example, (Nastaseet al. 2006) train their system on 600
noun–modifier pairs classified into six high-level semantic
relations (Cause, Participant, Spatial, Temporal, Quality).
The problem is that these relations are not uniformly dis-
tributed in the dataset. Moreover, most of the SemEval
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participant systems1 were trained on an average of 140 ex-
amples per relation. This raises questions about the effec-
tiveness of the algorithms and their capability to generalize
over seen examples in order to efficiently classify unseen
instances. Additionally, it is difficult to talk about the learn-
ing curve of each semantic relation, and thus, impossible to
draw valid conclusions about the difficulty of the task across
different relations.

In this paper we train our interpretation model on vari-
ous large annotated datasets and present observations on the
learning curves generated for each relation.

Classification of Semantic Relations between
Nominals

The SemEval-1 task on Semantic Relations between Nomi-
nals is to identify the underlying semantic relation between
two nouns in the context of a sentence. The SemEval ef-
fort focuses on seven separate semantic relations:Cause-
Effect, Instrument-Agency, Product-Producer, Origin-Entity,
Theme-Tool, Part-Whole, and Content-Container. The
dataset provided consists of 140 training and about 70 test
sentences for each of the seven relations considered.

In each training and test example sentence, the nouns
are identified and manually labeled with their correspond-
ing WordNet 3.0 senses. Moreover, each example is accom-
panied by the heuristic pattern (query) the annotators used
to extract the sentence from the web and the position of the
arguments in the relation. Positive and negative examples
of the Cause–Effect relation are listed in (1) and (2) below.
Cause–Effect relations are semantically similar to other rela-
tions such as Temporal, Source, Origin–Entity, and Product–
Producer. Instances encoding these relations are called near-
miss examples, as shown in (2).

(1) “He derives great joy and<e1>happiness</e1>
from <e2>cycling</e2>.” WordNet(e1) = “happi-
ness%1:12:00::”2, WordNet(e2) = “cycling%1:04: 00::”,
Cause-Effect(e2,e1) = “true”, Query = “happiness from *”

(2) “Women may experience<e1>anxiety</e1> from the
<e2>time</e2> they first learn about the breast abnormal-
ity.” WordNet(e1) = “anxiety%1:12:00::”, WordNet(e2) =
“time%1:11:00::”, Cause-Eff ect(e2,e1) = “false”; Query =
“anxiety from *”

The task is defined as a binary classification problem.
Thus, given a pair of nouns and their sentential context, a
semantic interpretation system decides whether the nouns
are linked by the target semantic relation. Based on the in-
formation employed, systems can be classified in four types
of classes: (A) systems that use neither the given WordNet
synsets nor the queries, (B) systems that use only WordNet
senses, (C) systems that use only the queries, and (D) sys-
tems that use both.

In this paper we present an evaluation of a knowledge-
intensive semantic interpretation system of type-B (Beamer,

1The exception here is UIUC’s system which was trained on
external data sets.

2The numbers after a noun refer to WordNet synset sense keys.

Rozovskaya, & Girju 2008). The system relies on WordNet
semantic features employed in a supervised learning model.

The Model
The learning model we use is described in detail in (Beamer,
Rozovskaya, & Girju 2008) and is a significant improvement
over Semantic Scattering (Moldovan & Badulescu 2005).
The main idea of the Semantic Scattering model is to find
the best set of noun semantic classes that would separate
the positive and the negative examples and that would ac-
curately classify unseen instances. This is done by finding
a boundary (a division in the WordNet noun hierarchy) that
would best generalize over the training examples. The dis-
tinguishing feature of the present model is a much improved
boundary detection algorithm. In particular, we introducea
more efficient probability function for better boundary spe-
cialization, and thus for better semantic interpretation of un-
seen examples.

Experiments
We describe four experiments. The first three experiments
are performed on the SemEval-1 dataset and focus on the be-
havior of our model from several perspectives. Specifically,
we show how our model compares against Semantic Scatter-
ing and the top-ranked systems in the SemEval-1 competi-
tion. Furthermore, we distinguish between two types of data
instances, depending on the type of information required for
the identification of a relation between two nouns. We com-
pare the performance on both types of data and discuss the
effectiveness of our model in this context. Finally, the ex-
periment IV shows for each relation the learning curves as
generated by our model and Semantic Scattering. In what
follows, we refer to Semantic Scattering as SemScat1 and to
our algorithm as SemScat2.

Experiment I
Experiment I evaluates SemScat2 models with respect to the
SemEval-1 test data. Table 1 presents accuracy results of
SemScat1 and SemScat2, where a model is trained for each
relation on the training data from SemEval-1 and tested on
the corresponding SemEval-1 test set. SemScat2 outper-
forms SemScat1 on all relations, except Theme-Tool, with
an absolute increase of 6% on average.

Table 2 shows that SemScat2 places fifth among the 14
systems in the SemEval-1 competition. This is despite the
fact that it does not make use of sentence context, making a
prediction using the noun–noun pair only.

Experiment II
As in Experiment I, only the SemEval-1 data are used. How-
ever, for each relation, the test and training sets are lumped
together and 10-fold cross-validation is performed, yielding
a prediction for each example.

Table 3 compares the performance of SemScat13 and

3It should be noted that since the choice of development set
for SemScat1 is crucial for the performance, the performance of
SemScat1 can change dramatically on the same test set with the
same training set due to a choice of the development set.
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Relation SemScat1 SemScat2
[% Acc.] [% Acc.]

Cause-Effect 60.8 73.0
Instrument-Agency 50.7 70.0
Product-Producer 65.5 67.9
Origin-Entity 59.7 63.6
Theme-Tool 63.6 54.5
Part-Whole 63.4 70.4
Content-Container 60.8 67.6
Average 60.7 66.8

Table 1: Experiment I results: Models are trained on
SemEval-1 training data and tested on SemEval-1 test data.
Acc. means “Accuracy”.

System F [%] Acc [%]
UIUC 72.4 76.3
FBK-IRST 71.8 72.9
ILK 71.5 73.2
UCD-S1 66.8 71.4
SemScat2 65.8 66.8

Table 2: Experiment I results: Comparison of SemScat2
with top-ranked B-systems of the SemEval-1 competition.
F and Acc mean “F1” and “Accuracy” respectively.

SemScat2 with respect to the accuracy of each algorithm
on each relation. The results show that SemScat2 signifi-
cantly outperforms SemScat1 on Cause-Effect, Instrument-
Agency, Origin-Entity, Content-Container. On the remain-
ing three relations, the two algorithms exhibit comparable
results. Overall, SemScat2 outperforms SemScat1 by 6%.

Moreover, for each relation, we split the lumped training
and test examples intoregular andcontext-sensitive. Regu-
lar examples are those where the relation between the two
given nouns can be determined out of context.Context-
sensitiveexamples are those in which sentence context is
required for their correct interpretation. This split was per-
formed manually by an annotator based on his judgment.
Consider, for example, the following sentences with respect
to the ”Cause-Effect” relation. In (3) and (4) we can say

Relation SemScat1 SemScat2
[% Acc.] [% Acc.]

Cause-Effect 57 69
Instrument-Agency 61 70
Product-Producer 64 63
Origin-Entity 61 68
Theme-Tool 62 63
Part-Whole 72 71
Content-Container 58 75
Average 62 68

Table 3: Experiment II results: 10-fold cross-validation
on SemEval-1 data. Columns 2 and 3 show accuracy for
each relation of SemScat1 and SemScat2 respectively. Acc.
means “Accuracy”.

with high confidence that ”Cause-Effect” relation is ”True”.
By contrast, in (5) and (6) it is the sentence context that de-
termines the answer. We consider example (3) regular and
(4) context-sensitive.

(3) <e1>tumor shrinkage</e1> <e2>radiation ther-
apy</> Cause-Effect(e2,e1)=”true” ”The period of
<e1>tumor shrinkage</e1> after <e2>radiation
therapy</e2> is often long and varied”.

(4) <e1>activation</e1> <e2> summer</e2> Cause-
Effect(e2,e1)=”false” ”One newly formed Iraqi battalion
is on duty, with scheduled for<e1>activation</e1> by
<e2>summer</e2> 2004.”

(5) <e1>nausea</e1> <e2>abnormal sensations</e2>
Cause-Effect(e2,e1)=”true” ”It is likely that the
<e1>nausea</e1> comes from <e2>abnormal
sensations</e2> originating from areas of the brain
that are sensing the lack of oxygen.”

(6) ” <e1>anxiety</e1> <e2>exam</e2> Cause-
Effect(e2,e1)=”false” ”The following are very basic tips
which may help you manage your<e1>anxiety</e1> in
the<e2>exam</e2>.” Comment: Time; the context does
not imply that the exam is the cause for the anxiety.

Each relation contains between 26 and 60 context-
sensitive examples. Table 4 compares the performance in
accuracy of SemScat2 in 10-fold cross-validation on regular
(column 2) and context-sensitive (column 3) examples. In
parentheses, we list the performance on positive and nega-
tive examples within each group4.

Examples (pos.; neg.)
Relation Regular Context-sensitive

[% Acc.] [% Acc.]
Cause-Effect 71 (79; 63) 63 (71; 50)
Instrument-Agency 78 (82; 74) 37 (42; 32)
Product-Producer 61 (80; 34) 71 (78; 33)
Origin-Entity 70 (71; 69) 58 (56; 67)
Theme-Tool 66 (54; 72) 48 (42; 58)
Part-Whole 75 (82; 70) 42 (54; 31)
Content-Container 77 (85; 70) 63 (57; 69)
Average 71 (75; 65) 55 (57; 49)

Table 4: Experiment II results on regular and context-
sensitive SemEval-1 examples. Columns 2 and 3 show ac-
curacy for each relation of SemScat2 on regular and context-
sensitive examples, respectively.

We observe that consistently across all relations, accuracy
on both positive and negative examples is better in the regu-
lar group than in the corresponding context-sensitive group.
Overall, performance on regular examples is considerably
higher for all relations, with an average accuracy of 71%
for regular examples and 55% for context-sensitive exam-
ples. And while for Product-Producer the numbers for the
context-sensitive group are higher than for the regular group,

4Positive and negative examples are those labeled as ”True” and
as “False”, respectively in Gold Standard.
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the results for Product-Producer are compatible with the re-
sults for the other relations. This is because the proportion of
negative examples within the context-sensitive group for this
relation is much lower than the proportion of negative exam-
ples within the regular group, and the accuracy on negative
context-sensitive examples is much lower than on positive
examples from that group.

Separating regular examples allows us also to see which
relations are best captured with the WordNet hierarchy. In
particular, the results on regular examples in Table 4 demon-
strate that the best-processed relations are Instrument-
Agency, Part-Whole, and Content-Container, while the
poorest is Product-Producer.

Experiment III
Experiment III is concerned with the role of context-
sensitive examples in training. First, we wish to deter-
mine how a model trained on regular examples performs
on context-sensitive examples. Table 5, column 2 shows
the performance of SemScat2 trained on regular examples
and tested on context-sensitive examples (as in Experiment
II). This is compared with the performance obtained when
the model is trained and tested on both regular and context-
sensitive examples with 10-fold cross-validation (mixed
model)in column 3. We note that models in experiment IV
do not perform as well as the models from experiment II.
Since the training sizes are roughly the same in both exper-
iments, the main difference between the models is the ab-
sence of context-sensitive examples in the models of exper-
iment IV. It can be conjectured that the presence of context-
sensitive examples in training is beneficial, when the test set
is composed of such examples.

Furthermore, we wish to determine whether the pres-
ence of context-sensitive examples in training is detrimen-
tal, when the test set consists only of regular examples. Ta-
ble 5 compares the results of experiment II (10-fold cross-
validation on all the data) (column 5) with 10-fold cross-
validation on regular examples only (column 4)5. The
test sets contain only regular examples in both cases. We
observe that there is no significant difference in perfor-
mance. When context-sensitive examples are removed from
training, the performance improves for relations Instrument-
Agency, Product-Producer, and Theme-Tool, and decreases
for Cause-Effect and Content-Container.

Experiment IV
In this experiment, we determine the learning curve for each
relation. Because the SemEval-1 training data contain only
140 examples per relation, which is not sufficient to ob-
tain an accurate learning curve, we use additional datasets
6. The models are tested on SemEval-1 test data and trained
on all other data available. Since the number of exam-
ples varies considerably from one relation to another, we
group the relations into classes based on the size of their
data sets. Thus, class I (approx. 130 examples per relation)

5Note that the training sets are slightly smaller when context-
sensitive examples are removed from the data

6The datasets are described in (Beameret al. 2007)

contains{Content-Container, Instrument-Agency, Theme-
Tool} and class II (approx. 1,000 examples) has{Origin-
Entity, Cause-Effect, Product-Producer, Part-Whole}.

Figures 1 and 2 show the learning curves for each class.
Each figure displays the results of both SemScatt1 and Sem-
Scatt2. The models are tested on SemEval-1 test data and
trained on all other data available. SemScat2’s performance
is plotted with thick lines.

There are several observations to be made. First, at each
level of training, our system either outperforms Semantic
Scattering by a significant margin, or performs similarly to
it. Second, we note the stability of our system when com-
pared to Semantic Scattering. More specifically, our sys-
tem’s performance reaches the saturation point much faster
than Semantic Scattering. This unpredictable behavior is
a result of the randomly selected development set, which
Semantic Scattering uses to judge the performance of its
boundary during training. Finally, it should be noted that
the learning curves look quite flat. The low saturation point
may be an indication that our system needs a relatively small
amount of training data to achieve maximum performance.

Figure 1: The learning curves for Class I relations.

Conclusions
We have presented an evaluation of a learning model that
identifies and extracts noun features efficiently from Word-
Net’s IS-A backbone. Our experiments provide insight into
the problem of the identification of semantic relations be-
tween nominals. More specifically, we have shown that our
model is superior to Semantic Scattering (Moldovan & Bad-
ulescu 2005) both in terms of performance accuracy and sys-
tem stability. Moreover, our system places 5th with respect
to the top-ranked B-systems in the SemEval-1 competition.
We believe this is an important result, given the information
that the model requires. We have also shown that WordNet
structure is capable of capturing some relations better than
others. Additionally, we have made a distinction between
regular examples and those that require sentence context for
the relation identification. Our system performs much better
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Relation Regular Mixed Regular Mixed
models#1 models#1 models#2 models#2
[% Acc.] [% Acc.] [% Acc.] [% Acc.]

Cause-Effect 56 63 68 71
Instrument-Agency 28 37 82 78
Product-Producer 52 71 70 61
Origin-Entity 36 58 71 70
Theme-Tool 45 48 67 66
Part-Whole 38 42 79 75
Content-Container 56 63 74 77
Average 44 55 73 71

Table 5: Comparison of models trained on regular examples and mixed data, when tested on context-sensitive examples
(columns 2 and 3) and regular examples (columns 4 and 5).

Figure 2: The learning curves for Class I relations.

on regular examples, as expected. Finally, learning curves
show that the task difficulty varies across relations and that
adding more training data from other sources does not in-
crease the performance.
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