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Abstract

This paper presents a semantic role labeling
(SRL) scheme using dynamic conditional
random fields (DCRFs). The proposed sys-
tem treats SRL as sequential tagging with
dependencies between and among different
SRL labeling decisions modeled as depen-
dencies among labels in a factorized random
field. This approach is motivated by previ-
ous research showing the usefulness of con-
ditional random fields (CRFs) in NLP tasks
and current interest in finding better ways
to represent complex dependencies in SRL
models. I show competitive results in ar-
gument identification and labeling on small
numbers of training instances.

1 Introduction

Semantic role labeling (SRL), generally, is the NLP
task of automatically assigning semantic roles to
predicate arguments according to labeling schemes
like PropBank (Kingsbury and Palmer, 2002, Palmer
et al., 2005) and FrameNet (Baker et al., 1998). For
example, in (1) a PropBank-oriented SRL system is
expected to assignthey the A0 subject label,ana-
lysts theA1 object label, andannouncing openings
theA2 oblique label for the predicatepleased. For
the predicateannouncing in (2), though, the system
should assign theA0 label to they, theA1 label to
openings and no labels to all remaining tokens.

(1) [A0 They] pleased [A1 analysts] by [A2 announcing
openings].

(2) [A0 They] pleased analysts byannouncing [A1
openings].

In addition to patterns between predicates and
the role labels they assign, it is also evident that
more complex interactions constrain semantic role
labeling decisions. Haghighi et al. (2005), Pun-
yakanok et al. (2005), and others (Roth and Yih,
2005, Toutanova et al., 2005) have observed that role
labeling decisions must respect complex constraints
and dependencies such as the tendency for subjects
to come before objects or the patterning of distinct
predicates with distinct kinds and numbers of argu-
ments. In the CoNLL-2005 shared task1 (Màrquez
and Carreras, 2005), systems that accounted for this
sort of complexity were among the state of the
art for SRL. The approaches demonstrated, how-
ever, have captured these constraints in joint models
as discriminative re-ranking (Haghighi et al., 2005,
Toutanova et al., 2005) or optimization (Punyakanok
et al., 2005, Roth and Yih, 2005) problems because
of the exponential space of joint labelings.

I apply a dynamic condition random field (DCRF)
to capture the complex constraints of SRL; because
whereas performing exact inference over an expo-
nential space of all joint labelings is intractable, ap-
proximate inference over a large subset of joint la-
belings is not (Sutton et al., 2004, 2007). Further,
this approach is more in the spirit of the machine
learning paradigm because it relies on inferred rather
than explicitly stated label dependencies, opening up
the possibility for the model to encode hidden rela-
tionships between joint decisions.

In section 2, I introduce conditional random fields
(CRFs) and motivate the use of dynamic conditional
random fields in the extant task. Section 3 provides
an overview of the proposed system architecture. I

1http://www.lsi.upc.edu/ srlconll/



describe experiments and results in section 4 and
conclude in section 5.

2 Conditional Random Fields

2.1 Background and Motivations

Conditional random fields (Lafferty et al., 2001, Sut-
ton and McCallum, 2006) are discriminative mod-
els with an undirected graphical structure belong-
ing to the general class of graphical models (Jor-
dan, 2004). CRFs are aimed at structured learning
problems such as sequence, graph, and tree labeling
which makes them apropos for labeling or segment-
ing natural language data. CRFs have been success-
fully applied to a wide-range of NLP tasks (Lafferty
et al., 2001) including SRL (Roth and Yih, 2005,
Cohn and Blunsom, 2005) often with state of the art
or near state of the art results.

CRFs, being discriminative in nature, allow con-
ditioning on arbitrarily large feature sets (Lafferty
et al., 2001, Wallach, 2004). Accommodation of a
large yet appropriate feature space has been shown
to be a critical factor in the construction of SRL
systems (Gildea and Jurafsky, 2002, Pradhan et al.,
2004). Any model unable to cope with numerous
feature functions would be severely hampered in the
SRL domain.

Previous work on SRL has also indicated that the
task is best represented as a series or cascade of mul-
tiple subtasks — feature extraction, tree pruning or
relation selection, argument identification, argument
labeling — and that each of these tasks can con-
tribute positively or negatively to the overall per-
formance of labeling decisions (Gildea and Juraf-
sky, 2002, Xue and Palmer, 2004, Pradhan et al.,
2004). Sutton et al. (2004) show that a single DCRF
model outperforms multiple labeling tasks joined
via cascades in part-of-speech tagging and noun-
phrase chunking. This paper considers whether a
DCRF is viable as a model of simultaneous argu-
ment identification and argument labeling.

And because DCRFs forgo the first-order Markov
assumption among labels such as is made by linear-
chain and tree CRFs and encode Markov depen-
dence between distinct factors in the random field,
DCRFs can represent complex interactions among
observations and predictions. Existing CRF pro-
posals for SRL have either provided no represen-

tation (Cohn and Blunsom, 2005) or only an ex-
plicit representation (Roth and Yih, 2005) of label-
ing constraints. This paper addresses the insights of
Haghighi et al. (2005), Punyakanok et al. (2005),
and others (Roth and Yih, 2005, Toutanova et al.,
2005) that SRL decisions must respect complex con-
straints and dependencies, but it does so by offering
a model that can infer the constraints and dependen-
cies of SRL and represent them in defeasible man-
ner.

2.2 Model Representation

A typical linear-chain CRF defines the conditional
probability of a label sequencey given an observa-
tion sequencex as in equation (3):

p(y|x,Λ) =
1

Z(x)

∏

c∈C

exp(
∑

k

λkfk(yc,xc)) (3)

whereΛ is a set of parameters,Z(·) is a partition
function, fk(·) are feature functions defined on in-
put, and the setC is the set of cliques or transitions
defined over the graph.

A dynamic conditional random field, though, is
a CRF with its parameters and variables tied or re-
peated over a sequence (Sutton et al., 2004, 2007).

p(y|x,Λ) =
1

Z(x)

∏

t∈T

∏

c∈C

exp(
∑

k

λkfk(yc,t,x))

(4)
This is reflected in the probability distribution given
in (4) by the label sequencesyc,t being tied across
both cliques,C, and time-steps,T . For example, in
figure (1) an abstract DCRF is shown with 2 linear
chains for labels. Figures (2) and (3) show the model
applied to examples (1) and (2).

3 System Architecture

The system consists of a supervised machine learn-
ing pipeline, using automatically tagged, tokenized,
and dependency parsed English language data that:
(1) extracts features, (2) generates a set of of re-
lations under consideration for each predicate, and
(3) trains and tests SRL labeling over the sequence
of suggested relations. These steps are described in
sections 3.1, 3.2, 3.3, and 3.4.
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Figure 1: A graphical representation of a dynamic CRF with 2
linear chains for labels. The hidden variables are represented
by clear circles and the observed variables are representedby
shaded circles. In a labeling taskz andy correspond to label
predictions andx correspond to features of observed data such
as words, parts of speech, etc.
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Figure 2: A dynamic CRF applied to a sequence of text for se-
mantic role labeling for the predicateannouncing. The top fac-
tor corresponds to role labeling decisions and the bottom factor
corresponds to argument identification decisions. The shaded
circles are observed data.
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Figure 3: A dynamic CRF applied to a sequence of text for
semantic role labeling for adjacent predicates. The top factor
corresponds to role labeling decisions for the predicatepleased.
The bottom factor corresponds to role labeling decisions for the
predicateannouncing. The shaded circles are observed data.

3.1 Feature Representation

For all tokens in the training and test instances, a
set of features is extracted and then converted into
binary features by combining the feature values and
labels. The features are described as belonging to
one of the following four categories.

Predicate features: head word, lemma.

Argument features: dependent word, dependent POS, lemma.

Argument context: preceding and following words, preceding
and following words’ POS, is before predicate, is after
predicate.

Predicate-argument relational features: relation to the pred-
icate, path to the predicate

This feature set is rather shallow as compared to pre-
vious approaches (Gildea and Jurafsky, 2002, Xue
and Palmer, 2004, Pradhan et al., 2004) and excludes
features such as predicate voice, subcategorization,
temporal word flags, and word and path distances.

3.2 Relation Selection

Hacioglu (2004) defines a relation selection or de-
pendency pruning algorithm that is able to reduce
the data for SRL several-fold with a small percent-
age miss of target semantic role labels. Relation se-
lection is critical in this model because it will make
label sequences shorter so that adjacency is more
predictive and soften the impact of the complexity
of the inference algorithm used to decode the label
sequences. Reducing sequence length without re-
ducing the amount of substantive training material
will make computation more feasible.

The relation selection algorithm reduces the set of
dependency relation nodes under consideration by
skipping all but the following while linearizing the
dependency tree:

• predicate

• predicate’s parent

• predicate’s children

• predicate’s grand-children

• predicate’s siblings

• predicate’s siblings’ children

• predicate’s siblings’ grand-children

In addition, the set is further pruned by remov-
ing leaf nodes that never receive semantic role la-
bels during training, e.g. nodes bearing determiner,



punctuation, and gap relations. Table 1 reports the
impact of applying this procedure to the CoNLL-
2008 shared task development data. A 3-fold de-
crease was achieved with little more than a 5% loss
of predicate arguments.

3.3 Inference and Parameter Estimation

Because DCRFs have connections between and
among labels and factors and between time-steps,
the graph they define is “loopy” or cyclic. As
such exact inference is intractable; however, Sut-
ton et al. (2004, 2007) show that tree reparameter-
ization (TRP), a form of loopy belief propagation,
and L-BFGS parameter estimation can be used for
approximate inference and parameter estimation, re-
spectively, with negligible loss in accuracy.

Following Sutton et al. (2004), I use the belief
propagation and parameter estimation schemes pro-
vided in the abstract CRF implementation of the
GRMM (Sutton, 2006, McCallum, 2002) toolkit2.
Using GRMM, a DCRF like that depicted in figure
1 can be constructed with the bulk of the effort fo-
cused on feature extraction and relation selection.

3.4 Sequential Tagging

CRFs have a graphical structure making them a nat-
ural choice for sequential labeling tasks. In a CRF
for SRL, hidden variables correspond to labeling de-
cisions and observed variables correspond to sets of
features defined over input. Hidden nodes are con-
nected, minimally, over time-steps.

A graphical representation of a DCRF model for
SRL is given in figure 1. In figure 1,xi represent
features defined over input observations,zi repre-
sent primary SRL labeling decisions such as the la-
belsA0 or A1, andyi represent secondary SRL la-
beling decisions such as argument identification or
adjacent predicate role label predictions. Figures 2
and 3 further illustrate the model showing multiple
label predictions applied to the sequence of text in
examples (1) and (2).

4 Experiments and Results

The model was trained and evaluated using the
CoNLL-2008 shared task3 (Surdeanu et al., 2008)

2http://mallet.cs.umass.edu
3http://www.yr-bcn.es/conll2008/

training and development data, respectively. Gold
standard dependency parses and predicate identifica-
tion were used throughout. Three experiment setups
were considered.

1. A DCRF was trained on the first 5,000 training
instances using gold standard argument identi-
fication. Belief propagation was set to converge
at a threshold of 0.001 or 1,000 iterations. A
guassian prior (σ2 = 10.0) was used to prevent
overfitting. The model converged after 170 iter-
ations, taking 100 hours of training time. This
serves as a competitive benchmark for the re-
maining experiments which do not assume gold
standard argument identification.

2. A DCRF was trained on the first 1,000 train-
ing instances using a simple relation selection
algorithm that is known to over-prune. Argu-
ments were predicted using a dedicated linear-
chain in the DCRF. Belief propagation was set
to converge at a threshold of 0.05 or 15 itera-
tions. A gaussian prior (σ2 = 10.0) was used
to prevent overfitting. The model converged af-
ter 192 iterations, taking 80 hours of training
time.

3. A DCRF was trained on the first 1,000 train-
ing instances using a relation selection algo-
rithm with a small margin of error. Arguments
were predicted using a dedicated linear-chain
of the DCRF. Belief propagation was set to con-
verge at a threshold of 0.05 or 15 iterations. A
gaussian prior (σ2 = 10.0) was used to pre-
vent overfitting. Due to time, the model was
evaluated after 40 iterations, taking 24 hours of
training time.

Results for each experimental configuration are
given in tables 2, 3, and 4. Experiment 1 results,
F1 = 79.38, indicate a sort of upper bound for this
approach to semantic role labeling. Experiments
2 and 3 fall below this value atF1 = 67.48 and
F1 = 58.18, respectively; however, in both cases,
some experiment parameters — convergence thresh-
old and belief propagation iterations — and the vol-
ume of training data were adjusted dramatically to
favor smaller run times. Despite such handicaps, ex-
periments 2 and 3 produce results above those of
a comparable Maximum Entropy model trained on
5,000 training instances.



Retained Relations % Retained Arg. Relations Missed Args. % Missed

ALL 202,813 100% 14,878 0 0%
SIMPLE 52,938 26.20% 13,333 1,545 10.38%
COMPLEX 66,567 30.82% 14,093 785 5.28%

Table 1: The size of the CoNLL-2008 shared task development set without relation selection (ALL ), with relation section without the
pruning of leaf nodes such as determiners (SIMPLE), and with relation selection with the pruning of leaf nodessuch as determiners
(COMPLEX).

Labels P R F1
OVERALL 0.7907 0.7970 0.7938
CORE (A0–A5) 0.7875 0.8085 0.7979
ADJUNCT (AM-*) 0.8010 0.7585 0.7792
REFERENCE(R-*) 0.8209 0.7466 0.7820
CONTINUED (C-*) 0.8291 0.6736 0.7433

Table 2: Results for experiment 1 trained on 5,000 sentences
using gold standard argument identification

Labels P R F1
ARG. IDENT. 0.9247 0.9247 0.9247
OVERALL 0.7073 0.6452 0.6748
CORE (A0–A5) 0.6969 0.6598 0.6778
ADJUNCT (AM-*) 0.7511 0.6107 0.6107
REFERENCE(R-*) 0.8077 0.5701 0.6684
CONTINUED (C-*) 0.7627 0.3125 0.4434

Table 3: Results for experiment 2 trained on 1,000 sentences
using SIMPLE relation selection and a dedicated factor for ar-
gument prediction

What is most striking in the experiments, though,
is the accuracy of the argument identification pre-
dictions. Argument identification accuracy of 92%
is close to the best results given in Xue and Palmer
(2004) and Pradhan et al. (2004), but here the vol-
ume of training material is almost an order of mag-
nitude lower. In view of the results of experiment
1 where argument identification was given, using
more reasonable convergence thresholds and belief
propagation iterations may indeed allow models like
those used in experiments 2 and 3 to perform like
that of experiment 1 due to the scant difference in
argument identification accuracy between the mod-
els.

5 Conclusion

Dynamic conditional random fields are discrimina-
tive graphical models that dispense with first-order

Labels P R F1
ARG. IDENT. 0.9193 0.9193 0.9193
OVERALL 0.6693 0.5146 0.5818
CORE (A0–A5) 0.6678 0.5333 0.5930
ADJUNCT (AM-*) 0.6704 0.4656 0.5495
REFERENCE(R-*) 0.7423 0.4449 0.5563
CONTINUED (C-*) 0.5000 0.0145 0.0282

Table 4: Results for experiment 3 trained on 1,000 sentences
using COMPLEX relation selection and a dedicated factor for
argument prediction

Markov independence assumptions and allow for si-
multaneous or joint predictions. I have proposed a
DCRF semantic role labeling scheme that addresses
the issue of complex dependencies and constraints
in SRL labeling decisions. The model was eval-
uated against the CoNLL-2008 shared task devel-
opment data showing promising results for simul-
taneous semantic role labeling and argument identi-
fication. The system best score for argument label-
ing and argument identification isF1 = 67.48 and
F1 = 92.47, respectively.
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