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Abstract

We present an open source translation system

that provides a clean-room implementation of

the hierarchical phrase-based statistical trans-

lation model introduced in (Chiang, 2005) and

refined in (Chiang, 2007). To our knowledge

this is the first freely available hierarchical

phrase-based translation system which imple-

ments cube pruning. We introduce extensions

to (Chiang, 2007) to take advantage of multi-

ple source languages.

1 Introduction

While the area of statistical machine translation is

very active, there are few generally available tools

available to researchers, and even fewer open-source

tools. For researchers specifically interested in hier-

archical phrase-based statistical translation methods,

there is no freely available implementation of Chi-

ang (2007) on which to build. In this paper we pro-

vide a brief overview of existing tools, and present

the first freely available hierarchical phrase-based

statistical translation tool which implements cube-

pruning. Finally, we introduce a new technique for

improving translation results when multiple source

languages are available.

Moses (Koehn et al., 2007) and Phramer

(Olteanu et al., 2006) provide open-source re-

implementations of the non-hierarchical phrase-

based Pharaoh system (Koehn, 2004). Zollmann and

Venugopal (2006) present an open source syntax-

augmented hierarchical phrase-based system written

in C++; their system includes a Chiang (2005) com-

patibility mode, but does not implement cube prun-

ing (Chiang, 2007). Hiero, the system presented in

Chiang (2007), is a hierarchical phrase-based system

which implements cube pruning, but is not generally

available and is not open source. Cubit (Huang and

Chiang, 2007) is an open source reference imple-

mentation of just the cube pruning algorithm which

requires a separately trained Pharaoh-style phrase

table.

Our system is a clean-room implementation

of the hierarchical phrase-based statistical trans-

lation model introduced in Chiang (2005) and

refined in Chiang (2007). The system imple-

ments all three language model integration tech-

niques from Chiang (2007), including cube prun-

ing. This system is implemented in Java, and was

designed to be easily extended. The software is

released under the GNU General Public License

(GPL); code and documentation are available at

http://sf.net/projects/nlp-parsers.

The remainder of this paper is structured as fol-

lows. Section 2 briefly reviews the hierarchical

translation model originally presented in Chiang

(2007). Section 3 describes how decoders which im-

plement this model can produce n-best lists of trans-

lations, using the framework introduced in Huang

and Chiang (2005). Finally, section 4 presents on-

going research which extends this model by using

multiple source languages when translating.

2 Model

Our model is trained on a sentence-aligned parallel

corpus. Word alignments are extracted for each par-

allel sentence in the corpus using GIZA++ (Och and

Ney, 2000) and refined using the “final-and” method

of Koehn et al. (2003).

Following Chiang (2007), our model is a
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Figure 1: Log-linear features

weighted synchronous context-free grammar where

the only nonterminals are X, S, and S′. X is by

far the most prevalent nonterminal in the grammar;

synchronous context-free rules of the form X →
〈γ, α,∼〉 are extracted automatically from the word-

aligned sentence pairs, following the process and re-

strictions of Chiang (2005). In addition to the ex-

tracted rules, the grammar includes the following

rules used to combine sub-translations:

S → 〈S
¬

X


, S
¬

X

〉 (1)

S → 〈X
¬

, X
¬
〉 (2)

S′ → 〈S
¬

, 〈s〉 S
¬
〈/s〉〉 (3)

The nonterminal S represents the left-hand side of

the two glue rules, (1) and (2), which which can be

used to combine partial translations serially rather

than hierarchically. S′ is the start symbol; rule (3) is

used to enclose a complete translation S with begin-

ning and end of sentence tags.

The weight of an extracted synchronous context-

free rule is defined as a log-linear combination of

weighted features:

w(X → 〈γ, α〉) =
∑

i

φi(X → 〈γ, α〉) × λi (4)

We use the feature set defined in Chiang (2005),

listed in figure 1. We estimate the rule-specific fea-

ture values φ for each rule using relative frequency

estimation. Each log-linear feature has a corre-

sponding weight λ. All feature values are in log

domain. Rules (2) and (3) are each defined to have

log-domain weight of zero. The log-domain weight

of glue rule (1) is defined to be −λglue.

Given a set of synchronous context-free rules, our

decoder uses a variant CKY algorithm to parse in-

put sentences. The parse chart then represents a

shared forest of all possible translations that the de-

coder could produce from the rule set. Each com-

plete derivation in the parse chart represents a parse

tree from that shared forest. The weight of a deriva-

tion is the sum of the weights for each rule used in

the derivation:

w(D) =
∑

r∈D

w(r) (5)

The best derivation is obtained by simply select-

ing the derivation with the highest weight, of those

derivations which completely span the source lan-

guage input:

D̂ = arg max
D

w(D) (6)

Because our rules are synchronous, during pars-

ing we must store the target language right-hand side

of each rule as it is applied. The target language

translation for a given derivation can then be ex-

tracted by tracing through the rule applications used

to construct a derivation.

3 Training

The model above requires meaningful log-linear fea-

ture weights. The quality of translations resulting

from the decoder is highly dependent on the log-

linear feature weights. Meaningful feature weights

can be obtained by performing minimum error rate

training (Och, 2003). Minimum error rate training

attempts to optimize the BLEU score of a develop-

ment set of sentences by tuning the log-linear feature

weights of the model.

The minimum error rate training process requires

that the decoder be capable of producing an n-best

list of translations for each input sentence. Huang

and Chiang (2005) show how an n-best list of deriva-

tions can be obtained from a weighted, directed hy-

pergraph. By organizing our parse chart as a hyper-

graph, we are able to use the efficient algorithm 2 of

Huang and Chiang (2005) to extract an n-best list of

translations for each source sentence.

We therefore view the parse chart produced by our

decoder as a weighted, directed hypergraph. Each

chart cell entry is a vertex in the hypergraph. Ver-

tices are connected via hyperarcs, where each hy-

perarc corresponds to a rule application. The weight

of a hyperarc is the weight of the rule associated

with that hyperarc, plus the weights of the tail ver-

tices of the hyperarc. The weight of a vertex node is
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Figure 2: Sample parse chart viewed as a hypergraph. Each node in the hypergraph corresponds to a chart cell entry in

the parse chart. Each hyperarc corresponds to a single rule application in the parse chart. The head node of a hyperarc

is the left-hand side of the rule associated with the rule application. The tail nodes of the hyperarc are the elements of

the source language right-hand for that rule. Note that a given node may have potentially many hyperarcs for which

that node is the head.

the weight of the highest-weighted hyperarc headed

at that vertex. In order to allow a translation to be

extracted from a derivation, we store the target lan-

guage right-hand side in the relevant hyperarc when-

ever we apply a rule in the parse chart. Figure 2

shows an example parse chart for a short sentence

viewed as a hypergraph.

When considering a given span during parsing,

there may be many rules with the same source lan-

guage right-hand side, but different target language

right-hand sides. In such cases, each rule will be

applied separately, resulting in numerous hyperarcs

with the same head and same tail nodes, but with

different target language right-hand sides stored in

each hyperarc. Figure 3 shows a simple partial hy-

pergraph to illustrate this phenomenon.

Once feature values are calculated for each rule,

we train feature weights for our system using min-

imum error rate training, using the open source

MERT implementation presented in Olteanu et al.

(2006). Minimum error rate training attempts to op-

timize the BLEU score of a development set of sen-

tences by tuning the log-linear feature weights of the

model.

We present the above implementation in the hope

that such a freely available system may help stimu-

late further research. We now briefly introduce our

ongoing research based on this system.

4 Translation using multiple source

languages

Nearly all existing machine translation techniques

assume a single source language and a single tar-

get language. However, governments and large busi-
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Figure 3: Partial hypergraph showing an portion of

the parse chart from figure 2. This figure shows that

there may be multiple hyperarcs with the same span,

same head, and same tail nodes. Because each hy-

perarc corresponds to a single rule application in the

parse chart, each hyperarc has a target language string

associated with it that corresponds to the target lan-

guage right-hand side of the rule application. In

this example, hyperarc A represents an application of

rule X → 〈wiederaufnahme X
¬

, resumption X
¬
〉 and

hyperarc B represents an application of rule X →
〈wiederaufnahme X

¬
, restarting X

¬
〉. In real parse

charts it is very common for an X node to have a large

number of outgoing hyperarcs.

nesses often encounter situations where documents

must be translated into a large number of languages.

The proceedings of the European Union parliament

is one notable example. In such situations, machine

translation systems which take advantage of multi-

lingual resources may be of use. Using relatively

few resources, source documents can be manually

translated from a single source into a small number

of target languages, effectively resulting in multiple

synchronous source languages for each document to

be translated.

Our system exploits this multiplicity of source

languages by training a translation model for each

source-target language pair. When decoding a given

sentence, we begin with the sentence, in original

source language f1. The original source sentence

is manually or semi-automatically translated from

f1 into a small number of pseudo-source languages,

f2 . . . fn. Now, the modeling task becomes:

arg max
e

P (e | f1, f2, . . . , fn) =

arg max
e,x

P (e | fx) (7)

We take the straightforward strategy of choos-

ing the translation with the highest probability from

any of the available sources. This approach is mo-

tivated by the observation that different language

pairs present different ambiguities under different

conditions. By starting with the same sentence in

multiple source languages, it may be possible to find

a better translation than if only one language pair is

considered.

We translate from each source language f1 and

pseudo-source language f2 . . . fn into a common

target language e, using our decoder and the appro-

priate source-target translation model. We would

like our system to simply choose the translation with

the highest score as the final result. But, because the

log-linear scores produced by the decoder are not di-

rectly comparable, we must first normalize the score

of each translation by the inside probability of the

relevant parse tree.

A translation or partial translation can be uniquely

identified in a parse tree by a chart cell entry node
and a rule application arc rooted at node. The inside

probability, β, of a subtree is defined as the proba-

bility of a (partial) translation:

P (arc) = exp(w(arc)) (8)

β(arc) = P (arc)
∏

node ∈

tail(arc)

β(node) (9)

β(node) =
∑

arc ∈

bs(node)

β(arc) (10)

β(nodeterm) = 1 (11)

Given a rule application arc that spans the entire

parse tree, and the corresponding chart cell entry

node at which arc is rooted, the probability of the

corresponding translation can be defined in terms of

the weight of arc and the inside probability of node:

P (node) =
exp(w(arc))

β(node)
(12)



The normalized probabilities of each translation

can now be compared. The translation with the high-

est probability is selected as the final result.

Our current research applies this technique to the

highly multi-lingual Europarl corpus (Koehn, 2005).

We expect this will yield consistently higher scores

than the Chiang (2007) baseline, as the best transla-

tion can be chosen from among multiple decoders.

5 Conclusion

Statistical hierarchical phrase-based translation is an

active and very promising area of research. This pa-

per introduces the first freely available implementa-

tion of such a translation system which also imple-

ments the cube pruning language model integration

technique.

Governments and large businesses often en-

counter situations where documents must be trans-

lated into a large number of languages. In such sit-

uations, the use of translation techniques which ex-

ploit multiple parallel source languages may be able

to improve the quality of translation results.
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